

LIGHTING JUSTIFICATION REPORT

for
Boggy Creek Road from Simpson Road to Narcoossee Road
Osceola County, Florida

Prepared By:
Dewberry Engineers, Inc.
800 North Magnolia Avenue, Suite 1000
Orlando, Florida 32803

April 2021

Dewberry

Prepared By:

This item has been digitally signed and sealed by Bahman Behzadi, PE on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.
TABLE OF CONTENTS ..Page
1.0 INTRODUCTION 1
2.0 LIGHTING WARRANTS 2
3.0 NET PRESENT VALUE ANALYSIS 3
4.0 BENEFIT-COST ANALYSIS 10
5.0 CONCLUSION 10
TABLES Page
Table 1 - Warranting Conditions for Continuous Freeway Lighting (CFL) 2
Table 2 - Alt \#1 (No-Build) Summary of Total Present Value 7
Table 3 -Alt \#2 (Full Lighting) Summary of Total Present Value 7
Table 4 - Crash Cost Analysis 7
Table 5 - Photometric Results 8
Table 6 - Net Present Value Analysis 9
Table 7 - Benefit-Cost Ratio Summary 10
FIGURES Page
Figure 1: Project Location Map 1
Figure 2: Present Worth Analysis Spreadsheet (Example) 5
Figure 3: FDOT Design Manual (FDM) Calibration Factors 6
APPENDICES
Appendix A Typical Section
Appendix B Present Worth Analysis
Appendix C Roadway Optimizer Layout
Appendix D Net Present Value Analysis
Appendix E Cost Estimate for Installation of Proposed Lighting
Appendix F Lighting Geometric and Operational Factors

$1.0 \quad$ INTRODUCTION

Project Description

This lighting justification report is being conducted for Boggy Creek Road from Simpson Road to Narcoossee Road from a two-lane undivided roadway to a four-lane divided roadway. The Proposed Typical Section for this project can be found in Appendix A.

Per the FDOT Design Manual (FDM) Section 231.4 and Chapter 14 of the FDOT Manual on Uniform Traffic Studies (MUTS), the proposed intersections within the project limits, will be lighted and a warranting analysis will not be required. The purpose of this report is to determine whether roadway lighting between the intersections and the end project limits is warranted and justified. The project limits are shown within Figure 1 below.

Figure 1: Project Location Map

Analysis Methodology

The analysis is based on the procedure outlined in Chapter 14 of the MUTS. The MUTS divides the procedure into two steps: Step 1 consists of determining whether or not roadway lighting is warranted by addressing the American Association of State Highway and Transportation Officials (AASHTO) and the Transportation Association of Canada (TAC) warranting systems; and Step 2 consists of determining if the roadway lighting is justified by performing a net present value (NPV) analysis to quantify the safety benefits of the lighting system versus the cost of construction, maintenance, and operation. The AASHTO Roadway Lighting Design Guide warranting system is used to evaluate freeways, bridges,
and interchanges. The TAC Guide for the Design of Roadway Lighting is used to evaluate local streets, major arterials, and collectors.

2.0 LIGHTING WARRANTS

Lighting warrants assist in determining locations where lighting may be beneficial based on defined conditions. The warranting systems discussed in the MUTS are the TAC Guide for the Design of Roadway Lighting and the AASHTO Roadway Lighting Design Guide. These warranting systems are detailed below.

TAC Warranting System

The TAC Guide for the Design of Roadway Lighting warranting system is used for local streets, major arterials, and collectors. This warranting system is based upon geometric, operational, environmental, and collision factors. Since Boggy Creek Road is a major arterial, this warranting system was considered.

AASHTO Warranting System

The AASHTO Roadway Lighting Design Guide warranting system is used for freeways, bridges, and interchanges. This warranting system is based upon traffic volumes, spacing of freeway interchanges, lighting in adjacent areas, and night-to-day crash ratios. Since this project is not a freeway, bridge, or interchange, this warranting system was not considered.

The following warranting conditions described in Table 1 is used for information only and do not apply to our project.

Table 1 - Warranting Conditions for Continuous Freeway Lighting (CFL)

Case	Warranting Conditions
CFL-1	Sections in and near cities where the current average daily traffic (ADT) is 30,000 or greater.
CFL-2	Sections where three or more successive interchanges are located with an average spacing of 1.5 miles or less, and adjacent areas outside the right-of-way are substantially urban in character.
CFL-3	Sections of two miles or more passing through a substantially developed suburban or urban area in which one or more of the following conditions exist: a. Local traffic operates on a complete street grid having some form of street lighting, parts of which are visible from the freeway. b. The freeway passes through a series of developments-such as residential, commercial, industrial and civic areas, colleges, parks, terminals, etc. that include lighted roads, streets, parking areas, yards, etc. - that are lighted. c. Separate cross streets, both with and without connecting ramps, occur with an average spacing of 0.5 miles or less, some of which are lighted as part of the local street system. d. The freeway cross section elements, such as median and borders, are substantially reduced in width below desirable sections used in relatively open country.
CFL-4	Sections where the ratio of night to day crash rate is at least 2.0 times the statewide average for all unlighted similar sections, and a study indicates that lighting may be expected to result in a significant reduction in the night crash rate. Where crash data is not available, rate comparison may be used as a general guideline for crash severity.

3.0 NET PRESENT VALUE ANALYSIS

If lighting is warranted, as determined by the TAC warranting conditions, a net present value (NPV) analysis is required to determine if lighting is justified for the project. The NPV evaluates the profitability of the proposed improvement, utilizing an interest rate of 4%.

The NPV analysis is used to compare the total crash cost savings (difference between the monetary cost of crashes for unlighted conditions and lighted conditions) to the present value of the lighting project (cost of construction, maintenance, and operation). If the total crash cost savings is greater than or equal to the present value of the lighting project, then lighting is justified.

Per Chapter 14 of the MUTS, the predictive method outlined in the Highway Safety Manual (HSM) should be used for the lighting justification crash cost analysis where applicable. The HSM method is applicable for the facility and site types shown on the following page.

HSM Chapter	Undivided Roadway Segments	Divided Roadway Segments	Intersections			
			Stop Control on Minor Leg(s)		Signalized	
			3-Leg	4-Leg	3-Leg	4-Leg
10-Rural Two-Lane Roads	\checkmark	-	\checkmark	\checkmark	-	\checkmark
11-Rural Multilane Highways	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
12-Urban and Suburban Arterial Highways	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

The HSM predictive method is utilized to predict the crash frequency for a roadway with and without lighting. A monetary cost of crashes is then quantified for each condition following the guidance of Section 122.6.3 of the FDM. The cost difference between the two conditions is the total crash cost savings. The NPV is then computed by comparing the crash cost savings to the present value of the project. The steps to perform a NPV computation using the HSM methodology are detailed below:

Step 1: Identify or compute crash frequencies for NO LIGHTING CONDITIONS
Step 2: Quantify monetary cost of crashes for NO LIGHTING CONDITIONS
Step 3: Identify or compute crash frequencies for LIGHTED CONDITIONS
Step 4: Quantify monetary cost of crashes for LIGHTED CONDITIONS
Step 5: Compute difference: BENEFIT = Monetary cost of crashes for NO LIGHTING CONDITIONS - Monetary cost of crashes for LIGHTED CONDITIONS

Step 6: Utilizing an interest rate of 4% and analysis period (i.e. 20 years), compute the project NPV.

The FDOT MUTS Manual spreadsheet 750-020-2lb Present Worth Analysis for RuralMultilane Roads (09/20) was utilized for the present worth analysis and is shown in Figure 2 on the following page. The spreadsheet is a tool derived from the predictive method outlined in Chapter 11 of the HSM; the general form of the predictive model for rural multilane highways, shown in HSM equation 11-1, is as follows:

$$
N_{\text {predicted }}=N_{\text {spf } x} \times\left(C M F_{1 x} \times C M F_{2 x} \times \ldots \times C M F_{y x}\right) \times C_{x}
$$

Where:
$N_{\text {predicted }}=$ predicted average crash frequency for a specific year on site type x;
$N_{\text {Spf } x}=$ predicted average crash frequency determined for base conditions of the SPF developed for site type x;
$C M F_{y x}=$ crash modification factors specific to site type x and specific geometric design and traffic control features y; and
$C_{x}=$ calibration factor to adjust SPF for local conditions for site type x.
The $N_{\text {spf } x}$ for the base condition is calculated by HSM equation 11-9, shown below:

$$
N_{\text {Spf } r d}=e^{(a+b \times \ln (A A D T)+\ln (L))}
$$

Where:
$N_{\text {Spf } r d}=$ base total number of roadway segment crashes per year;
$A A D T$ = annual average daily traffic (vehicles/day) on roadway segment;
$L=$ length of roadway segment (miles); and $a, b=$ regression coefficients (shown in HSM Table 11-5 and Appendix B).

The various crash modification factors applied are based on site conditions such as segment length, lane widths, shoulder width and type, median width, AADT, presence of lighting, and speed enforcement condition and are discussed and derived in the HSM. Applied CMFs are shown in Appendix B for each condition.

Figure 2: Present Worth Analysis Spreadsheet (Example)

Calibration Factors (Cx)
The present worth analysis requires a calibration factor (Cx) based on the roadway characteristics. The calibration factor was obtained from Table 122.6.3 in the FDM, as shown in Figure 3. The calibration factor (Cx) is used in the 750-020-21b Present Worth Analysis for Rural-Multilane Roads (09/20) spreadsheet.

Figure 3: FDOT Design Manual (FDM) Calibration Factors

Table 122.6.3 HSM Calibration Factors for Florida			
	Type Facility	Abbreviation	Calibration Factor (Cx)
FDOT Roadway Calibration Factors			
Rural	2-lane Undivided	R2U	1.00
	4-lane Divided	R4D	0.68
Urban	2-lane Undivided	U2U	1.02
	3-lane with a Center Two-Way Left Turn Lane	U32LT	1.04
	4-lane Undivided	U4U	073
	4-lane Divided	U4D	1.63
	5-lane with a Center Two-Way Left Turn Lane	U52LT	0.70
FDOT Intersection Calibration Factors			
Rural	2-lane 3-Leg Stop-Controlled	RTL3ST	1.27
	2-lane 4-Leg Stop-Controlled	RTL4ST	0.74
	2-lane 4-Leg Signalized	RTL4SG	0.92
	Multilane 3-Leg Stop-Controlled	RML3ST	2.20
	Multilane 4-Leg Stop-Controlled	RML4ST	1.64
	Muttilane 4-Leg Signalized	RML4SG	0.45
Urban	3-Leg Stop-Controlled Intersection	USA3ST	1.14
	4-Leg Stop-Controlled Intersection	USA4ST	1.87
	3-Leg Signalized w/o Ped. CMFs	USA3SG w/o Ped.	2.58
	3-Leg Signalized w/ Ped. CMFs	USA3SG w/ Ped.	2.50
	4-Leg Signalized	USA4SG	2.27

When calculating present worth of crashes, it is recommended the subject corridor be analyzed as one segment and lighting is automatically justified at all signalized intersections within the project limits. Therefore, the entire project was analyzed as one segment.

It should be noted that the crashes predicted using HSM methodologies are not nighttimeonly crashes, but rather a compilation of all day and night crashes. However, when modifying the lighting parameter within the present worth analysis spreadsheet (present/not present), the calculation automatically adjusts to show the impact of lighting to nighttime crashes only.

The total present worth of crashes is determined by the cumulative present values over 14 years, from Opening Year (2025) to Design Year (2039), and is based on the following equation:

$$
\text { Present Value }=\text { Future Value } /(1+i)^{n}
$$

Where:
$i=$ required rate of return; and
$n=$ number of years.

The total present worth of crashes calculations for each condition are detailed in Appendix B.

Tables 2 and 3 below illustrate the predicted total present values for the no-build (unlighted) and build (lighted) conditions, respectively, with crash cost summarized in

Table 4. A detailed analysis of the total crash cost for each condition is shown in Appendix B.

Table 2 - Alt \#1 (No-Build) Summary of Total Present Value

SUMMARY OF TOTAL PRESENT VALUE Alternative \#1 (No-Build)							
	Beginning Year			End Year			Total Present Value
Segment Site	Year	AADT	\mathbf{N} expected	Year	AADT	\mathbf{N} expected	
Mainline	2025	20,000	19.2	2039	34,634	32.9	\$57,597,385
TOTAL No-Build							\$57,597,385

Table 3 -Alt \#2 (Full Lighting) Summary of Total Present Value

| SUMMARY OF TOTAL PRESENT VALUE | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alternative \#2 (Full Lighting) | | | | | | |

Table 4 - Crash Cost Analysis

From Simpson Road to	
Narcoossee Road	
No Lighting Condition	Total Present Worth
Lighted Condition	$\$ 57,597,385$
Crash Cost Savings for Lighted Condition	$\$ 53,676,507$

Present Value of Lighting Project - Including Installation, Operation, and Maintenance costs
The present value of the lighting project was calculated by determining the installation, maintenance, and energy costs associated with the installation of proposed lighting. The cost savings determined by the analysis previously stated is $\mathbf{\$ 3 , 9 2 0 , 8 7 8}$. To estimate the installation cost, a typical section photometric analysis has been performed using Lighting Analyst, Inc.'s AGi32 software version 19.10 to determine the pole spacing required to meet the lighting criteria outlined in Section 231 of the FDM. The analysis resulted in a pole spacing of 265 feet. This equates to approximately 118 proposed poles along the roadway segment. The results of the typical section photometric analysis are detailed in Appendix C and summarized in Table 5 below:

Input Data	
Luminaire:	Lumec RoadFocus LED Cobra Head Luminaire (Catalog
	No. RFL-241W112LED4K-G2-R2M-HS
Lamp:	243-watt LED
Distribution:	Type II medium distribution (B4-U2-G4)
Mounting Height:	45 feet
Arm Length:	15 feet
Pole Configuration:	Staggered Across
Pole Spacing:	265 feet

Table 5 - Photometric Results

	Average/Min Ratio	Max/Min Ratio	Average Illuminance (H.F.C.)	Veiling Luminance Ratio
FDM Table 231.2.1 Criteria	$4: 1$ or Less	$10: 1$ or Less	1.5	$0.3: 1$ or Less
Proposed Photometric Results	$2.85: 1$	$7.09: 1$	1.51	$0.28: 1$

Estimates for the installation, maintenance, and energy costs based on the calculated pole spacing are summarized below. The detailed calculation used to determine the estimated installation cost is provided in Appendix E.

Installation Cost $(\mathbf{I C})=\mathbf{\$ 1 , 6 1 6 , 4 9 5 . 9 5}$
(Based on the latest FDOT Historical Costs)
Present Value of Annual Maintenance Cost (PVMC) = \$472,000.00
(\$200 per fixture per year)
Present Value of Annual Energy Cost (PVEC) $=\mathbf{\$ 2 6 0 , 7 4 8 . 0 0}$
(Based on Florida Average of 11.42¢ per kWh)

The crash cost savings and the total lighting project costs have been compared to determine the NPV of the lighting project, utilizing the service life for a lighting project. The results are shown in Table $\mathbf{6}$ below:

Table 6 - Net Present Value Analysis

From South of US 17/92 to Ronald Reagan Pkwy	Total Present Value
Crash Cost Savings for Lighted Condition	$\$ 3,223,451.00$
Total Lighting Project Costs	$\$ 2,349,243.95$
Net Present Value (NPV)	$\$ 874,207.05$

The total project cost to light Boggy Creek Road within the project limits was less than the monetary crash savings and resulted in NPV of \$874,207.05.

4.0 BENEFIT-COST ANALYSIS

The purpose of performing a benefit-cost analysis is to determine if the project is justified based on its benefit-cost ratio. If the benefit-cost ratio is equal to 1.0 or more, then lighting is justified for high crash locations, as identified by the State Safety office. At other locations, the benefit-cost ratio should be 2.0 or greater. The B / C ratio was calculated using the following equation:

$\mathrm{B} / \mathrm{C}=\frac{\text { Crash Cost Savings }}{\text { Improvement Cost }}=\mathrm{X} \cdot \mathrm{XX}$

Since there is no existing lighting, the system has been analyzed using the installation of lighting as the improvement cost. The results of the benefit-cost analysis are summarized in Table 7 below.

Table 7 - Benefit-Cost Ratio Summary

Alternative \#2 Full Lighting	
Crash Cost Savings	$\$ 3,223,451.00$
Improvement Cost	$\$ 2,349,243.95$
B / C	1.37

Based on the Benefit-Cost analysis, the lighting would provide a significant return on investment. Therefore, it is justified to install lighting along the proposed segment of Boggy Creek Road in accordance with current lighting standards.

5.0 CONCLUSION

The TAC warrant system was used to determine if lighting was warranted for the project area. The AASHTO warrant system was not utilized considering the project area is not a freeway, bridge, or interchange. Based on the TAC warranting system, proposed lighting was determined to be warranted along Boggy Creek Road within the project limits.

According to the findings outlined in this report including the results of the NPV calculations and benefit-cost analysis, it is recommended to install proposed continuous lighting along Boggy Creek Road corridor within the project limits.

Appendix A
 Typical Section

Appendix B

Present Worth Analysis

Alternative \#1
 (No-Build - No Lighting Installed)

(1)	CMF for Right Shoulder Width			(3)	(4)			$\frac{(6)}{\text { Combined CMF }}$
CMF for Lane Width				CMF for Median Width	CMF for Lighting	CMF for Automate	Speed	
CMF 1rd	CMF 2rd			CMF 3rd	CMF 4rd	Enforcement		CMF comb
from Equation 11-16	from Table 11-17			from Table 11-18	from Equation 11-17	from Section 11.7.2		$(1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)$
1.02	1.18				1.00	1.00		
Worksheet 1C (a) -- Roadway Segment Crashes for Rural Muttiane Divided Roadway Segments								
$\frac{(1)}{\text { Crash Severity Level }}$	$\begin{gathered} \text { (2) } \\ \hline \text { SPF Coefficients } \\ \hline \text { from Table 11-5 } \\ \hline \end{gathered}$			(3)	(4)	(5)	(6)	(7)
				N spf rd	Overdispersion Parameter, \mathbf{k}	Combined CMFs	Calibration Factor, Cr	Predicted average crash $\frac{\text { frequency, } \mathbf{N}_{\text {oredicted rs(d) }}}{(3)^{*}(5)^{*}(6)}$
	a	b	c	from Equation 11-9	from Equation 11-10			
Total	-9.025	1.049	1.549	23.074	0.036	1.22	0.68	19.168
Fatal and Injury (FI)	-8.837	0.958	1.687	11.308	0.031	1.22	0.68	9.394
Fatal and Injury $\left.{ }^{(}(\mathrm{F})^{9}\right)$	-8.505	0.874	1.740	6.859	0.030	1.22	0.68	5.698
Property Damage Only (PDO)	--	--	--	--	--	--	--	$\frac{(7)_{\text {TOTAL }}-(77)_{\text {FI }}}{9.775}$

${ }_{\text {Collision Type }}$	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Proportion of Collision Type(total)	$\mathbf{N}_{\text {predicted Isd(d) (TOTAL) }}^{\text {(crashes }}$ (year) (crashes/year)	Proportion of collision Type(Fl)	$\begin{aligned} & \mathbf{N}_{\text {predicted } r(d)(f)(F)} \\ & \text { (crashes } / \text { year) } \end{aligned}$	Proportion of Collision Tvoe (FI ${ }^{\text {a }}$	N predicted rs (Fl^{a}) (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted is isd) (PDoo) }}$ (crashes/year)
	$\begin{gathered} \text { from Table } \\ 11-6 \end{gathered}$	(7) Toral from Worksheet $1 C$ (a)	$\begin{gathered} \text { from Table } 11 \\ 6 \end{gathered}$	$\begin{aligned} & \text { (7) } \mathrm{F} \text { If from Worksheet } \\ & 1 \mathrm{C} \text { (a) } \end{aligned}$	from Table	$\begin{aligned} & \hline(7)_{\mathrm{FI}}{ }^{\text {af }} \text { from Worksheet } \\ & 1 \mathrm{C} \text { (a) } \end{aligned}$	from Table	(7)poo from Worksheet 1C (a)
Total	1.000	19.168	1.000	9.394	1.000	5.698	1.000	9.775
		(2)*(3) Total		(4) \times (5) ${ }_{\text {F }}$		(6) ${ }^{*}()_{F \cdot 1}{ }^{\text {a }}$		$\left.{ }^{(8)}\right)^{*}()_{\text {Poo }}$
Head-on collision	0.006	0.115	0.013	0.122	0.018	0.103	0.002	0.020
Sideswipe collision	0.043	0.824	0.027	0.254	0.022	0.125	0.053	0.518
Rear-end collision	0.116	2.224	0.163	1.531	0.114	0.650	0.088	0.860
Angle collision	0.043	0.824	0.048	0.451	0.045	0.256	0.041	0.401
Single-vehicle collision	0.768	14.721	0.727	6.829	0.778	4.433	0.792	7.741
Other collision	0.024	0.460	0.022	0.207	0.023	0.131	0.024	0.235

(1)	(2)	(3)	(4)
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/milyear)
	(7) from Worksheet 1C (a) or (b)		(2)/(3)
Total	19.2	5.9	3.2
Fatal and Injury (FI)	9.4	5.9	1.6
Fatal and Injury ${ }^{2}\left(\mathrm{~F}^{2}\right)$	5.7	5.9	1.0
Property Damage Only (PDO)	9.8	5.9	1.7

Tables Affiliated with CMFs for Specific Segment AADT values:

Table 11-16: CMF for Lane Width on Divided Roadway Segments$\left(\right.$ CMF $\left._{\text {RA }}\right)$			
	AADT (veh/day)		
Lane Width (ft.)	<400	400 to 2000	>2000
9	1.03	3.73	1.25
9.5	1.02	3.23	1.20
10	1.01	2.73	1.15
10.5	1.01	1.99	1.09
11	1.01	1.26	1.03
11.5	1.01	1.13	1.02
12	1.00	1.00	1.00

Worksheet 4A -- Predicted and Observed Crashes by Severity and Site Type Using the Project-Level EB Method												
(1)	(2)	(3)	(4)	(5)		(7)	(8)	(9)	(10)	(11)	(12)	(13)
Site type	Predicted average crash frequency(crashes/year)			Observedcrashes,$N_{\text {observed }}$(crashes/year)		$\mathrm{N}_{\text {wo }}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\text {p/comb }}$
	$\begin{aligned} & \hline N_{\text {predicted }} \\ & \text { (TOTAL) } \\ & \hline \end{aligned}$	$\mathrm{N}_{\text {predicted }}$ (FI)	$\begin{aligned} & \hline \mathrm{N}_{\text {predicted }} \\ & (\mathrm{PDO}) \\ & \hline \end{aligned}$			$\begin{gathered} \text { Equation A-8 } \\ (6)^{*}(2)^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation A-9 } \\ \operatorname{sqrt((6)*}(2)) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \mathrm{A}- \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { A. Equation A } \\ 11 \\ \hline \end{gathered}$	$\begin{array}{cc} \hline \text { A- Equation } \mathrm{A} \\ \hline 12 \\ \hline \end{array}$	$\begin{gathered} \text { Equation } \mathrm{A} \\ 13 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Equation } \mathrm{A}- \\ 14 \\ \hline \end{array}$
ROADWAY SEGMENTS												
Segment 1 (Divided)	19.168	9.394	9.775	--	0.036	13.231	0.831	--	--	--	--	--
Segment 2 (Undivided)	\#REF!	\#REF!	\#REF!	--	\#REF!	\#REF!	\#REF!	--	--	--	--	--
Segment 3				--				--	--	--	--	--
Segment 4				--				--	--	--	--	--
Segment 5				--				--	--	--	--	--
Segment 6				--				--	--	--	--	--
Segment 7				--				--	--	--	--	--
Segment 8				--				--	--	--	--	--
INTERSECTIONS												
Intersection 1	\#REF!	\#REF!	\#REF!	--	\#REF!	\#REF!	\#REF!	--	--	--	--	--
Intersection 2				--				--	--	--	--	--
Intersection 3				--				--	--	--	--	--
Intersection 4				--				--	--	--	--	--
Intersection 5				--				--	--	--	--	--
Intersection 6				--				--	--	--	--	--
Intersection 7				--				--	--	--	--	--
Intersection 8				--				--	--	--	--	--
COMBINED (sum of column)	\#REF!	\#REF!	\#REF!		--	\#REF!						

Worksheet 4B -- Project-Level EB Method Summary Results		
(1)	(2)	(3)
Crash severity level	$\mathrm{N}_{\text {predicted }}$	$\mathrm{N}_{\text {expected }}$
Total	(2) comв $^{\text {from Worksheet }}$ 4A	(13) сомв $^{\text {from Worksheet 4A }}$
	\#REF!	\#REF!
Fatal and injury (FI)	(3) сомв from Worksheet 4A	(3) Total * * (2) ${ }_{\text {FII }} /(2)_{\text {TOTAL }}$
	\#REF!	\#REF!
Property damage only (PDO)	(4) coms $^{\text {from Worksheet 4A }}$	(3) Total ${ }^{*}$ (2$)_{\text {PDO }} /(2)_{\text {TOTAL }}$
	\#REF!	\#REF!

ate of Florida Department of Transportation

Present Worth Analysis
Rural Multilane Arterial

No-Build Alternative

Shaded cell indicates the AADT is outside the limits
Total Present Value $\$ \mathbf{5 7 , 5 9 7 , 3 8 5}$

NOTES:

1. Present Value $=$ Future Cash Flow $/(1+\text { Required Rate of Return })^{\text {Number of Years You Have To Wait For The Cash Flow }}$
2. Traffic Growth Rate $=\left[\left(\left(A D T_{f} / A D T_{i}\right)^{(1 / /(-1))}\right)-1\right] \times 100$
where $A D T_{f}=$ Average Daily Traffic for Future Year
$A D T_{i}=$ Average Daily Traffic for Initial Year
I = Initial Year for ADT
F = Future Year for ADT

Page | 17

SUMMARY OF TOTAL PRESENT VALUE FOR SEGMENTS

Segment Site	Beginning Year			End Year			Total Present Value
	Year	AADT	$\mathbf{N}_{\text {predicted-rs }}$	Year	AADT	$\mathbf{N}_{\text {predicted-rs }}$	
DSeg1	2027	21,632	20.6	2036	30,789	29.3	\#REF!
DSeg2	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!	
COMBINED							\#REF!

Alternative \#2
 (Build - Install Lighting)

(1)	CMF for Right Shoulder Width			(3)	(4)	(5)		$\frac{(6)}{\text { Combined CMF }}$
CMF for Lane Width				CMF for Median Width	CMF for Lighting	CMF for Automate	Speed	
CMF 1rd	CMF 2rd			CMF 3rd	CMF 4rd	Enforcement		CMF comb
from Equation 11-16	from Table 11-17			from Table 11-18	from Equation 11-17	from Section 11.7.2		$(1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)$
1.02	1.18				0.91	1.00		
Worksheet 1C (a) -- Roadway Segment Crashes for Rural Muttiane Divided Roadway Segments								
$\frac{(1)}{\text { Crash Severity Level }}$	$\frac{(2)}{\text { SPF Coefficients }}$ from Table 11-5			(3)	(4)	(5)	(6)	(7)
				N spf rd	Overdispersion Parameter, \mathbf{k}	Combined CMFs (6) from Worksheet 1B (a)	Calibration Factor, Cr	Predicted average crash frequency, $\mathbf{N}_{\text {oredicted }}$ ss(d) $(3) *(5)^{*}(6)$
	a	b	c	from Equation 11-9	from Equation 11-10			
Total	-9.025	1.049	1.549	23.074	0.036	1.11	0.68	17.490
Fatal and Injury (FI)	-8.837	0.958	1.687	11.308	0.031	1.11	0.68	8.571
Fatal and Injury ${ }^{\text {a }}$ (F^{a})	-8.505	0.874	1.740	6.859	0.030	1.11	0.68	5.199
Property Damage Only (PDO)	--	--	--	--	--	--	--	$\frac{(7)_{\text {TOTALL }}-(7)_{\text {FI }}}{8.919}$

${ }_{\text {Collision Type }}$	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Proportion of Collision Type(total)	$\mathbf{N}_{\text {predicted Isd(d) (TOTAL) }}^{\text {(crashes }}$ (year) (crashes/year)	Proportion of collision Type(Fl)	$\begin{aligned} & \mathbf{N}_{\text {predicted } r(d)(f)(F)} \\ & \text { (crashes } / \text { year) } \end{aligned}$	Proportion of Collision Tvoe (FI ${ }^{\text {a }}$	N predicted rs (Fl^{a}) (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted is isd) (PDoo) }}$ (crashes/year)
	$\begin{gathered} \text { from Table } \\ 11-6 \end{gathered}$	(7) Toral from Worksheet $1 C$ (a)	$\begin{gathered} \text { from Table } 11 \\ 6 \end{gathered}$	$\begin{aligned} & \text { (7) } \mathrm{F} \text { If from Worksheet } \\ & 1 \mathrm{C} \text { (a) } \end{aligned}$	from Table	$\begin{aligned} & \hline(7)_{\mathrm{FI}}{ }^{\text {af }} \text { from Worksheet } \\ & 1 \mathrm{C} \text { (a) } \end{aligned}$	from Table	(7)poo from Worksheet 1C (a)
Total	1.000	17.490	1.000	8.571	1.000	5.199	1.000	8.919
		(2)*(3) Total		(4) \times (5) ${ }_{\text {I }}$		(6) ${ }^{+(7)}{ }_{\text {F }}{ }^{\text {a }}$		$\left.{ }^{(8)}\right)^{*}()_{\text {Poo }}$
Head-on collision	0.006	0.105	0.013	0.111	0.018	0.094	0.002	0.018
Sideswipe collision	0.043	0.752	0.027	0.231	0.022	0.114	0.053	0.473
Rear-end collision	0.116	2.029	0.163	1.397	0.114	0.593	0.088	0.785
Angle collision	0.043	0.752	0.048	0.411	0.045	0.234	0.041	0.366
Single-veticle collision	0.768	13.432	0.727	6.231	0.778	4.045	0.792	7.064
Other collision	0.024	0.420	0.022	0.189	0.023	0.120	0.024	0.214

(1)	- ${ }^{2}$ -		
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/mi/year)
	(7) from Worksheet 1C (a) or (b)	Say	(2)/(3)
Total	17.5	5.9	3.0
Fatal and Injury (FI)	8.6	5.9	1.5
Fatal and Injury ${ }^{\text {a }}$ (l^{2})	5.2	5.9	0.9
Property Damage Only (PDO)	8.9	5.9	1.5

Tables Affiliated with CMFs for Specific Segment AADT values:

Table 11-16: CMF for Lane Width on Divided Roadway Segments$\left(\right.$ CMF $\left._{\text {RA }}\right)$			
	AADT (veh/day)		
Lane Width (ft.)	<400	400 to 2000	$\bigcirc 2000$
9	1.03	3.73	1.25
9.5	1.02	3.23	1.20
10	1.01	2.73	1.15
10.5	1.01	1.99	1.09
11	1.01	1.26	1.03
11.5	1.01	1.13	1.02
12	1.00	1.00	1.00

Worksheet 4B -- Project-Level EB Method Summary Results		
(1)	(2)	(3)
Crash severity level	$\mathrm{N}_{\text {predicted }}$	$\mathrm{N}_{\text {expected }}$
Total	(2) comв $^{\text {from Worksheet } 4 \mathrm{~A}}$	(13) сомв $^{\text {from Worksheet 4A }}$
	\#NUM!	\#NUM!
Fatal and injury (FI)	(3) сомв from Worksheet 4A	(3) Total * * (2) ${ }_{\text {FI }} /(2)_{\text {TOTAL }}$
	\#NUM!	\#NUM!
Property damage only (PDO)	(4) coms $^{\text {from Worksheet 4A }}$	(3) Total ${ }^{*}$ (2$)_{\text {PDO }} /(2)_{\text {TOTAL }}$
	\#NUM!	\#NUM!

Present Worth Analysis
Rural Multilane Arterial

Build Alternative

	Year	AADT	Annual Number of Crashes						Annual Cost						
			Site Specific ($\mathrm{N}_{\text {predicted } / \text { expected }}$)	Fatality	Incap.	Non-Inc.	Possible Injury	PDO	Fatality	Incap.	Non-Inc.	Possible Injury	PDO	Total Cost	Present Value
1	2025	20,000	17.5	0.280	0.000	0.000	7.280	9.940	\$2,864,400	\$0	\$0	\$710,892	\$75,544	\$3,650,836	\$3,510,419
2	2026	20,800	18.2	0.291	0.000	0.000	7.571	10.338	\$2,978,976	\$0	\$0	\$739,328	\$78,566	\$3,796,869	\$3,510,419
3	2027	21,632	19.6	0.314	0.000	0.000	8.154	11.133	\$3,208,128	\$0	\$0	\$796,199	\$84,609	\$4,088,936	\$3,635,049
4	2028	22,497	20.3	0.325	0.000	0.000	8.445	11.530	\$3,322,704	\$0	\$0	\$824,635	\$87,631	\$4,234,970	\$3,620,070
5	2029	23,397	21.1	0.338	0.000	0.000	8.778	11.985	\$3,453,648	\$0	\$0	\$857,133	\$91,084	\$4,401,865	\$3,618,012
6	2030	24,333	21.9	0.350	0.000	0.000	9.110	12.439	\$3,584,592	\$0	\$0	\$889,631	\$94,538	\$4,568,760	\$3,610,758
7	2031	25,306	22.7	0.363	0.000	0.000	9.443	12.894	\$3,715,536	\$0	\$0	\$922,128	\$97,991	\$4,735,656	\$3,598,709
8	2032	26,319	23.6	0.378	0.000	0.000	9.818	13.405	\$3,862,848	\$0	\$0	\$958,689	\$101,876	\$4,923,413	\$3,597,490
9	2033	27,371	24.5	0.392	0.000	0.000	10.192	13.916	\$4,010,160	\$0	\$0	\$995,249	\$105,762	\$5,111,170	\$3,591,041
10	2034	28,466	25.4	0.406	0.000	0.000	10.566	14.427	\$4,157,472	\$0	\$0	\$1,031,809	\$109,647	\$5,298,928	\$3,579,766
11	2035	29,605	26.4	0.422	0.000	0.000	10.982	14.995	\$4,321,152	\$0	\$0	\$1,072,431	\$113,964	\$5,507,547	\$3,577,597
12	2036	30,789	27.4	0.438	0.000	0.000	11.398	15.563	\$4,484,832	\$0	\$0	\$1,113,054	\$118,280	\$5,716,166	\$3,570,300
13	2037	32,021	28.4	0.454	0.000	0.000	11.814	16.131	\$4,648,512	\$0	\$0	\$1,153,676	\$122,597	\$5,924,785	\$3,558,273
14	2038	33,301	29.5	0.472	0.000	0.000	12.272	16.756	\$4,828,560	\$0	\$0	\$1,198,361	\$127,346	\$6,154,266	\$3,553,935
15	2039	34,634	30.6	0.490	0.000	0.000	12.730	17.381	\$5,008,608	\$0	\$0	\$1,243,045	\$132,094	\$6,383,748	\$3,544,668

NOTES:

1. Present Value $=$ Future Cash Flow $/(1+\text { Required Rate of Return })^{\text {Number of Years You Have } \text { To Wait For The Cash Fiow }}$
2. Traffic Growth Rate $=\left[\left(\left(A D T_{f} / A D T_{i}\right)^{(1 /(F-1))}\right)-1\right] \times 100$
where $\mathrm{ADT}_{f}=$ Average Daily Traffic for Future Year
$A D T_{i}=$ Average Daily Traffic for Initial Year
$=$ Initial Year for ADT
F = Future Year for ADT

Page | 22

SUMMARY OF TOTAL PRESENT VALUE FOR SEGMENTS

Segment Site	Beginning Year			End Year			Total Present Value
	Year	AADT	$\mathbf{N}_{\text {predicted-rs }}$	Year	AADT	$\mathbf{N}_{\text {predicted-rs }}$	
DSeg1	2027	20,000	0.0	2036	20,000	0.0	$\$ 0$
DSeg2	2031	25,306	22.7	2038	33,301	29.5	$\$ 53,676,507$
COMBINED							$\$ 53,676,507$

Appendix C
 Roadway Optimizer Layout

Dewberry ${ }^{\circ}$

Roadway Optimizer - Layout 1

General:

4 LANE RDWY W 22' MEDIAN
Roadway Standard: IES RP-8-14
R-Table: R3 (Slightly Specular), $Q 0=0.07$ Actual $Q O$ Value: 0.07

Roadway Layout:

Layout Type: Two Rows, Staggered, With Median; 2R_STG_w/M
Roadway Width: 44 ft
Median Width: 22 ft
Lanes In Direction Of Travel: 2
Driver's Side Of Roadway: Right
Luminaire Information:
RFL-241W112LED4K-G2-R2M-HS
Description: RFL-241W112LED4K-G2-R2M-HS
File Name: RFL-241W112LED4K-G2-R2M-HS.ies
Lumens Per Lamp: N.A.
Number Of Lamps: 1
Total Lamp Lumens: N.A.
Luminaire Lumens: 25225
Luminaire Watts: 243
Efficiency (\%): N.A.
S/P Ratio: 1.00
Total Light Loss Factor: 1.000
Luminaire Arrangement: SINGLE
Arm Length: 15.667 ft
Offset: 0 ft

Luminaire Location Summary:
 Coordinates in ft

Spacing - Row 1: 265
Spacing - Row 2: 265

Label	X-Coord	Y-Coord	Z-Coord	Orient	Tilt	Spin
RFL-241W112LED4K-G2.	795	-15	45	90	0	0
RFL-241W112LED4K-G2.	530	-15	45	90	0	0
RFL-241W112LED4K-G2.	265	-15	45	90	0	0
RFL-241W112LED4K-G2.	0	-15	45	90	0	0

Roadway Optimizer - Layout 1 - Cont.

Luminaire Location Summary:						
Coordinates in ft						
RFL-241W112LED4K-G2...	-265	-15	45	90	0	0
RFL-241W112LED4K-G2...	-530	-15	45	90	0	0
RFL-241W112LED4K-G2...	-795	-15	45	90	0	0
RFL-241W112LED4K-G2...	662.5	125	45	270	0	0
RFL-241W112LED4K-G2...	397.5	125	45	270	0	0
RFL-241W112LED4K-G2... 132.5	125	45	270	0	0	
RFL-241W112LED4K-G2...	-132.5	125	45	270	0	0
RFL-241W112LED4K-G2...	-397.5	125	45	270	0	0
RFL-241W112LED4K-G2...	-662.5	125	45	270	0	0

Roadway Optimizer - Layout 1

RoadOpt_1_Luminance

\qquad

Luminance (Cd/SqM)

Average $=1.23$
Maximum $=2.28$
Minimum $=0.78$
Avg/Min Ratio $=1.58$
Max/Min Ratio $=2.92$
Max/Avg Ratio $=1.85$

Roadway Optimizer - Layout 1

RoadOpt_1_Illum

Illuminance (FC)
Average $=1.51$
Maximum $=3.76$
Minimum $=0.53$
Avg/Min Ratio $=2.85$
Max/Min Ratio $=7.09$
Max/Avg Ratio $=2.49$

Roadway Optimizer - Layout 1

RoadOpt_1_Vis_Level

\qquad

Visibility Level
STV $=3.787871$

Roadway Optimizer - Layout 1

RoadOpt_1_Vis_Level_Bkgd_Lum

\qquad

Background Luminance (Cd/SqM)

Average $=1.22$
Maximum $=2.27$
Minimum $=0.77$
Avg/Min Ratio $=1.58$
Max/Min Ratio $=2.95$
Max/Avg Ratio $=1.86$

Roadway Optimizer - Layout 1

RoadOpt_1_Vis_Level_Target_Lum

\qquad
\longrightarrow
\longrightarrow

Target Luminance (Cd/SqM)

Average $=1.61$
Maximum $=3.28$
Minimum $=0.07$
Avg/Min Ratio $=23$
Max/Min Ratio = 46.86
Max/Avg Ratio = 2.04

Roadway Optimizer - Layout 1

RoadOpt_1_Veil_Lum

\qquad

Veiling Luminance (Cd/SqM)

Average $=0.15$
Maximum $=0.35$
Minimum $=0.02$
Avg/Min Ratio $=7.5$
Max/Min Ratio $=17.5$
Max/Avg Ratio $=2.33$
MaxLv Ratio $=0.28$
Threshold Increment (TI) $=19.28$

Roadway Optimizer - Layout Comparison

	Layout 1
Description	4 LANE RDWY W
	22' MEDIAN
Roadway Standard	IES RP-8-14
R-Table	R3
Actual Q0 Value	0.07
Layout Type	2R_STG_w/M
Road Width	44
Median Width	22
Number Lanes	2
Number Lanes Opposite	0
Drivers Side	Right
Calc Area	Top
Label - Row 1	$\begin{aligned} & \text { RFL-241W112LED4K } \\ & \text {-G2-R2M-HS } \end{aligned}$
S/P Ratio 1	1
MH - Row 1	45
Setback - Row 1	15
+-Orient - Row 1	0
Tilt - Row 1	0
Spin - Row 1	0
Spacing - Row 1	265
Label - Row 2	$\begin{aligned} & \text { RFL-241W112LED4K } \\ & \text {-G2-R2M-HS } \end{aligned}$
S/P Ratio 2	1
MH - Row 2	45
Setback - Row 2	15
+-Orient - Row 2	0
Tilt - Row 2	0
Spin - Row 2	0
Spacing - Row 2	265
1_Luminance (Cd/SqM)	
Average	1.23
Maximum	2.28
Minimum	0.78

Roadway Optimizer - Layout Comparison - Cont.

	Layout 1
Avg/Min Ratio	1.58
Max/Min Ratio	2.92
Max/Avg Ratio	1.85
1_Illum (Fc)	
Average	1.51
Maximum	3.76
Minimum	0.53
Avg/Min Ratio	2.85
Max/Min Ratio	7.09
Max/Avg Ratio	2.49
1_Vis_Level	3.79

1_Vis_Level_Bkgd_Lum	(Cd/SqM)
Average	1.22
Maximum	2.27
Minimum	0.77
Avg/Min Ratio	1.58
Max/Min Ratio	2.95
Max/Avg Ratio	1.86

1_Vis_Level_Target_Lum	(Cd/SqM)
Average	1.61
Maximum	3.28
Minimum	0.07
Avg/Min Ratio	23.00
Max/Min Ratio	46.86
Max/Avg Ratio	2.04

1_Veil_Lum (Cd/SqM)	
Average	0.15
Maximum	0.35
Minimum	0.02
Avg/Min Ratio	7.50
Max/Min Ratio	17.50

Roadway Optimizer - Layout Comparison - Cont.

	Layout 1
Max/Avg Ratio	2.33
MaxLV Ratio	0.28
Threshold Incr. (TI)	19.28

Appendix D
 Net Present Value Analysis

From: Simpson Road

To: Narcoossee Road

Boggy Creek Road (CR 530)
PVMC (Present Value of Annual Maintenance Cost)

The Present Value of Annual Maintenance Cost (PVMC) is calculated using the formula below:

PVMC = Number of Poles x Number of Luminaires per Pole x Annual Maintenance Cost per Luminaire x Life Span of the Project (20 years).

Annual Maintenance Cost $=\$ 200.00$
$\mathrm{PVMC}=\quad 118 * 1 * \$ 200.00 * 20=$
$\$ 472,000.00$

PVEC (Present Value of Annual Energy Cost)
The Present Value of Annual Energy Cost (PVEC) is calculated using the following formula:

PVEC $=$ Number of Poles x Number of Luminaires per Pole x kW per Luminaire x Cost per kWh x Usage (hours/day) x 365 days/year x Life Span of the Project (20 years).

Cost per $\mathrm{kWh}=\quad 11.42 申$ (Florida Average)
kW per Luminaire $=$ Watts per Luminaire / $1000=\quad 269 \mathrm{~W} / 1,000 \mathrm{~kW}=\quad 0.269$
Usage $=\quad 11$ hours $/$ day

PVEC $=$
$118 * 1 * 0.241 \mathrm{~kW} * \$ 0.1142$ (Florida Average) * 11 hours * 365 days $* 20=$

Appendix E
 Cost Estimate for Installation of Proposed Lighting

March 30, 2021

Appendix F
 Lighting Geometric and Operational Factors

